Organic field-effect transistors integrated with Ti2CTx electrodes.
نویسندگان
چکیده
Recently, MXenes, which are two-dimensional early transition metal carbides and carbonitrides, have attracted wide attention because of their unique properties. In this study, the electrode applications of Ti2CTx, a member of the MXene family, in pentacene organic field-effect transistors (OFETs) are assessed. Kelvin probe force microscopy analysis was performed to determine the work function of Ti2CTx, which is estimated to be around 5.1 eV. Devices with Ti2CTx electrodes and pentacene channels were fabricated and their electronic performances were evaluated. The contact resistance between Ti2CTx and pentacene is as low as 3 kΩ cm, superior to those of other reported electrode materials. The temperature-dependent current-voltage transfer characteristics of the devices were used to extract activation energy, estimated to be 0.17 eV. This activation energy value is much lower than those of other electrode materials and demonstrates that Ti2CTx is a promising electrode for high performance OFET applications.
منابع مشابه
Frequency Characteristics of Polymer Field-Effect Transistors with Self-Aligned Electrodes Investigated by Impedance Spectroscopy
Solution-based organic field-effect transistors (OFETs) with low parasitic capacitance have been fabricated using a self-aligned method. The self-aligned processes using a cross-linking polymer gate insulator allow fabricating electrically stable polymer OFETs with small overlap area between the source-drain electrodes and the gate electrode, whose frequency characteristics have been investigat...
متن کاملCurrent trends in shrinking the channel length of organic transistors down to the nanoscale.
In this Review article, we highlighted current trends in shrinking the channel length of organic field effect transistors (OFETs) down to the nanoscale in three systems where sophisticated device fabrication has been integrated into the development of different electrodes with nanoscale gaps. The design principle is the combination of molecular design freedom and flexible molecular self-assembl...
متن کاملCharacterization and Design of Organic Field-Effect Transistor Circuits for Sensing Bioelectromagnetism NSF Summer Undergraduate Fellowship in Sensor Technologies
Current scanning technology for the brain and heart requires electrodes to be placed on the surface, with a wire connected to each electrode. Because the electrodes are large, it is impossible to achieve a high sampling resolution of the signals from the tissue being scanned. Silicon based structures are not very suitable for this application. They have a rigid planar surface which prevents the...
متن کاملElectrochemical doping for lowering contact barriers in organic field effect transistors
By electrochemically p-doping pentacene in the vicinity of the source-drain electrodes in organic field effect transistors the injection barrier for holes is decreased. The focus of this work is put on the influence of the p-doping process on the transistor performance. Cyclic voltammetry performed on a pentacene based transistor exhibits a reversible p-doping response. This doped state is evok...
متن کاملNano Organic Transistor with SiO2 / Poly VinylPyrrolidone Dielectric
In this paper, the morphology, roughness and nano structural properties of SiO2/Poly Vinyl Pyrrolidone synthesized with sol gel method, characterized by using scanning electron microscopy, atomic force microscopy and GPS132A techniques.The main material taken from oxide silicon with weight percentage of 20, 40, 60, 80 and from poly vinyl pyrrolidone with percentages of 80, 60, 40, 20 is synth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2018